ARALIK 2017 TARIH BASKILI
 MATHEMATICS II
 DERS Kitabina iliişkin düzeltme cetveli

1- Ünite 2, Sayfa 42, "Answer Key for "Test Yourself", Soru 7'nin cevap şıkkı "a" olarak güncellenmiştir.
7. a We first need to determine the intersection points of the given curves. To do so, let us equate them:

$$
\begin{gathered}
2 x^{3}=8 \mathrm{x} \\
2 x^{3}-8 x=0 \\
2 x\left(x^{2}-4\right)=0
\end{gathered}
$$

The points satisfying the last equation are $-2,0,2$. Since there is an extra condition of $x \geq 0$, the points of intersection are 0 and 2 . Also, in the interval $0 \leq x \leq 2$, we have $x^{3} \leq x$ and therefore the required area A is evaluated as

$$
\begin{aligned}
A & =\int_{0}^{2}\left(8 x-2 x^{3}\right) d x \\
& =\left.\left(4 \cdot x^{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{2} \\
& =\left(16-\frac{16}{4}\right)-0 \\
& =8 .
\end{aligned}
$$

2- Ünite 3, Sayfa 47, "Example", çözümü aşağıdaki şekilde değiştirilmiştir.

Example: A famous shoe company produces 80 units of shoes with a marginal cost of $C^{\prime}(x)=6 x^{2}+3 x+5$. If it costs 1772 to produce 4 units of shoes, what are the total and fixed costs?

Solution: We can find the total cost function $C(x)$ by integrating the marginal cost function with respect to x :

$$
\begin{aligned}
C(x) & =\int C^{\prime}(x) d x \\
& =\int\left(6 x^{2}+3 x+5\right) d x \\
& =2 x^{3}+\frac{3 x^{2}}{2}+5 x+c
\end{aligned}
$$

In order to find the integral constant, we need an extra information. This information is already given in the question, that is the cost of producing 4 units of shoes which is $C(4)=1772$. Inserting this value into the cost function we found through integration that

$$
\begin{aligned}
& C(4)=2 \cdot 4^{3}+\frac{3 \cdot 4^{2}}{2}+5 \cdot 4+c \\
& 2 \cdot 4^{3}+\frac{3.4^{2}}{2}+5 \cdot 4+c=1772 \\
& 128+24+20+c=1772 \\
& c=1000
\end{aligned}
$$

Now we can write the total function as $C(x)=2 x^{3}+\frac{3 x^{2}}{2}+5 x+1600$. Even when there is no production, there is a cost called the fixed cost and here it is easily found to be $C(0)=\mathrm{c}=1000$.

